
:' ... \,'

:~·:~;·;ji;·:~.i;>~;:.,i;;:,~;~,i;,i3~;,~:;~{." . ,

Cybersquare

!-.
t

A Plea for Lean
Software

:
I
I
I

I
I
I
I
I
I

Niklaus Wirth
ETHZilrich

1-
Software's girth has surpassed

its functionality, largely

because hardware

advances make this possible.

j The way to streamline

i software lies in disciplined

I methodologies and
i
I a return to the essentials.
I
i
I Computer

M emory requirements of today's workstations typically jump
substantially-from several to many megabytes-whenever
there's a new software release. When demand surpasses

capacity, it's time to buy add-on memory. When the system has no more
extensibility, it's time to buy a new, more powerful workstation. Do
increased performance and functionality keep pace with the increased
demand for resources? Mostly the answer is no.

About 25 years ago, an interactive text editor could be designed with as
little as 8,000 bytes of storage. (Modern program editors request 100 times
that much!) An operating system had to manage with 8,000 bytes, and a
compiler had to fit into 32 Kbytes, whereas their modern descendants
require megabytes. Has all this inflated software become any faster? On
the contrary. Were it not for a thousand times faster hardware, modern
software would be utterly unusable.

Enhanced user convenience and functionality supposedly justify the
increased size of software, but a closer look reveals these justifications to
be shaky. A text editor still performs the reasonably simple task of insert­
ing' deleting, and moving parts of text; a compiler still translates text into
executable code; and an operating system still manages memory, disk
space, and processor cycles. These basic obligations have not changed
with the advent of windows, cut-and-paste strategies, and pop-up menus,
nor with the replacement of meaningful command words by pretty icons.

The apparent software explosion is accepted largely because of the stag­
gering progress made by semiconductor technology, which has improved
the price/performance ratio to a degree unparalleled by any other branches
of technology. For example, from 1978 to 1993 Intel's 80x86 family of
processors increased power by a factor of 335, transistor density by a fac­
tor of 107, and price by a factor of about 3. The prospects for continuous
performance increase are still solid, and there is no sign that software's
ravenous appetite will be appeased anytime soon.l This development has
spawned numerous rules, laws, and corollaries, which are-as is cus­
tomary in such cases-expressed in general terms; thus they are neither
provable nor refutable. With a touch of humor, the following two laws
reflect the state of the art admirably well:

• Software expands to fill the available memory. (Parkinson)
• Software is getting slower more rapidly than hardware becomes faster.

(Reiser)

Uncontrolled software growth has also been accepted because cus­
tomers have trouble distinguishing between essential features and those
that are just "nice to have." Examples of the latter class: those arbitrarily
overlapping windows suggested by the uncritically but widely adopted

0018·9162/95/$4.00 © 19951EEE

desktop metaphor; and fancy icons decorating the screen
display, such as antique mailboxes and garbage cans that
are further enhanced by the visible movement of selected
items toward their ultimate destination. These details are
cute but not essential, and they have a hidden cost.

CAUSES FOR "FAT SOFTWARE"
Clearly, two contributing factors to the acceptance of

ever-growing software are (1) rapidly growing hardware
performance and (2) customers' ignorance of features that
are essential-versus-nice to have. But perhaps more impor­
tant than finding reasons for tolerance is questioning the
causes: What drives software toward complexity?

A primary cause of complexity is that software vendors
uncritically adopt almost any feature that users want. Any
incompatibility with the original system concept is either
ignored or passes unrecognized, which renders the design
more complicated and its use more cumbersome. When a
system's power is measured by the number of its features,
quantity becomes more important than quality. Every new
release must offer additional features, even if some don't
add functionality.

All features, all the time
Another important reason for software complexity lies

in monolithic design, wherein all conceivable features are
part of the system's design. Each customer pays for all fea­
tures but actually uses very few. Ideally, only a basic sys­
tem with essential facilities would be offered, a system
that would lend itself to various extensions. Every cus­
tomer could then select the extensions genuinely required
for a given task.

Increased hardware power has undoubtedly been the
primary incentive for vendors to tackle more complex
problems, and more complex problems inevitably require
more complex solutions. But it is not the inherent com­
plexity that should concern us; it is the self-inflicted com­
plexity. There are many problems that were solved long
ago, but for the same problems we are now offered solu­
tions wrapped in much bulkier software.

Increased complexity results in large part from our
recent penchant for friendly user interaction. I've already
mentioned windows and icons; color, gray-scales, shad­
ows, pop-ups, pictures, and all kinds of gadgets can easily
be added.

To some, complexity equals power
A system's ease of use always shoulq be a primary goal,

but that ease should be based on an underlying concept
that makes the use almost intuitive. Increasingly, people
seem to misinterpret complexity as sophistication, which
is baffling-the incomprehensible should cause suspicion
rather than admiration.

Possibly this trend results from a mistaken belief that
using a somewhat mysterious device confers an aura of
power on the user. (What it does confer is a feeling of help­
lessness, if not impotence.) Therefore, the lure of com­
plexity as a sales incentive is easily understood; complexity
promotes customer dependence on the vendor.

It's well known, for example, that major software houses
have heavily invested-with success-in customer service,
employing hundreds of consultants to answer customer

calls around the clock. Much more economical for both pro­
ducer and consumer, however, would be a product based
on a systematic concept-that is, on generally valid rules
of inference rather than on tables of rules that are applica­
ble to specific situations only-coupled with systematic doc­
umentation and a tutorial. Of course, a customer who
pays-in advance-for service contracts is a more stable
income source than a customer who has fully mastered a
product's use. Industry and academia are probably pursu­
ing very different goals; hence, the emergence of another
"law:"

• Customer dependence is more profitable than customer
education.

What I find truly baffling are manuals-hundreds of pages
long-that accompany software applications, programming
languages, and operating systems. Unmistakably, they sig­
nal both a contorted design that lacks clear concepts and an
intent to hook customers.

This lack of lucid concepts can't alone account for the
software explosion. Designing solutions for complicated
problems, whether in software or hardware, is a difficult,
expensive, and time-consuming process. Hardware's
improved price/performance ratio has been achieved
more from better technology to duplicate (fabricate)
designs than from better design technique mastery.
Software, however, is all design, and its duplication costs
the vendor mere pennies.

Initial designs for sophis-
ticated software applications
are invariably complicated,
even when developed by
competent engineers. Truly
good solutions emerge after
iterative improvements or
after redesigns that exploit

GOOD ENGINEERING IS
CHARACTERIZED BY A

GRADUAL, STEPWISE
REFINEME~H)F PRODUCTS,

new insights, and the most rewarding iterations are those
that result in program simplifications. Evolutions ofthis kind,
however, are extremely rare in current software practiee­
they require time-consuming thought processes that are
rarely rewarded. Instead, software inadequacies are typically
corrected by quickly conceived additions that invariably result
in the well-known bulk.

Never enough time
Time pressure is probably the foremost reason behind

the emergence of bulky software. The time pressure that
designers endure discourages careful planning. It also dis­
courages improving acceptable solutions; instead, it
encourages quickly conceived software additions and cor­
rections. Time pressure gradually corrupts an engineer's
standard of quality and perfection. It has a detrimental
effect on people as well as products.

The fact that the vendor whose product is first on the
market is generally more successful than the competitor
who arrives second, although with a better design, is
another detrimental contribution to the computer indus­
try. The tendency to adopt the "first" as the de facto stan­
dard is a deplorable phenomenon, based on the same time
pressure.

Good engineering is characterized by a gradual, step-

February I995

wise refinement of products that yields increased perfor­
mance under given constraints and with given resources.
Software's resource limitations are blithely ignored, how­
ever: Rapid increases in processor speed and memory size
are commonly believed to compensate for sloppy software
design. Meticulous engineering habits do not payoff in
the short run, which is one reason why software plays a
dubious role among established engineering disciplines.

LANGUAGES AND DESIGN
METHODOLOGY

Although software research, which theoretically holds
the key to many future technologies, has been heavily sup­
ported, its results are seemingly irrelevant to industry.
Methodical design, for example, is apparently undesirable
because products so developed take too much "time to
market." Analytical verification and correctness-proof
techniques fare even worse; in addition, these methods
require a higher intellectual caliber than that required by
the customary "try and fix it" approach. To reduce soft­
ware complexity by concentrating only on the essentials is
a proposal swiftly dismissed as ridiculous in view of cus­
tomers' love for bells and whistles. When "everything

A BSTRACTION
WORKS ONLY

WITH LANGUAGES
THAT POSTULATE
STRI.CT TYPING OF
VARIABLES AND
FUNCTIONS. IN
THISRESPECJ, C

goes" is the modus operandi, methodolo­
gies and disciplines are the first casualties.

Programming language methodologies
are particularly controversial. In the 1970s,
itwas widely believed that program design
must be based on well-structured methods
and layers of abstraction with clearly
defined specifications. The abstract data
type best exemplified this idea and found
expression in then-new languages such as
Modula-2 and Ada. Today, programmers
are abandoning well-structured languages
and migrating mostly to C. The C language
doesn't even let compilers perform secure

type checking, yet this compiler task is by far most help­
ful to program development in locating early conceptual
mistakes. Without type checking, the notion of abstrac­
tion in programming languages remains hollow and aca­
demic. Abstraction can work only with languages that
postulate strict, static typing of every variable and func­
tion. In this respect, C fails-it resembles assembler code,
where "everything goes."

Reinventing the wheel?
Remarkably enough, the abstract data type has reap­

peared 25 years after its invention under the heading
object oriented. This modern term's essence, regarded by
many as a panacea, concerns the construction of class
(type) hierarchies. Although the older concept hasn't
caught on without the newer description "object oriented,"
programmers recognize the intrinsic strength of the
abstract data type and convert to it. To be worthy of the
description, an object-oriented language must embody
strict, static typing that cannot be breached, whereby pro­
grammers can rely on the compiler to identify inconsis­
tencies. Unfortunately, the most popular object-oriented
language, C+ +, is no help here because it has been
declared to be upwardly compatible with its ancestor C.
Its wide acceptance confirms the following "laws":

Computer

• Progress is acceptable only if it's compatible with the
current state.

• Adhering to a standard is always safer.

Given this situation, programmers struggle with a lan­
guage that discourages structured thinking and disci­
plined program construction (and denies basic compiler
support). They also resort to makeshift tools that chiefly
add to software's bulk.

What a grim picture; what a pessimist! the reader must
be thinking. No hint of computing's bright future, hereto­
fore regarded as a given.

This admittedly somber view is realistic; nonetheless,
given the will, there is a way to improve the state of the art.

PROJECT OBERON
Between 1986 and 1989, Jurg Gutknecht and I designed

and implemented a new software system-called
Oberon-for modern workstations, based on nothing but
hardware. Our primary goal was to show that software
can be developed with a fraction of the memory capacity
and processor power usually required, without sacrificing
flexibility, functionality, or user convenience.

The Oberon system has been in use since 1989, serving
purposes that include document preparation, software
development, and computer-aided design of electronic cir­
cuits, among many others. The system includes

• storage management,
• a file system,
• a window display manager,
• a network with servers,
• a compiler, and
• text, graphics, and document editors.

Designed and implemented-from scratch-by two
people within three years, Oberon has since been ported
to several commercially available workstations and has
found many enthusiastic users, particularly since it is freely
available."

Our secondary goal was to design a system that could be
studied and explained in detail, a system suitable as a soft­
ware-design case study that could be penetrated top-down
and whose design decisions could be stated explicitly.
(Indeed, there is a lack of published case studies in soft­
ware construction, which becomes all the more evident
when one is faced with the task of teaching courses.) The
result of our efforts is a single book that describes the
entire system and contains the source code of all modules.

How is it possible to build a software system with some
five man-years of effort and present it in a single book?'

Three underlying tenets
First, we concentrated on the essentials. We omitted any­

thing that didn't fundamentally contribute to power and
flexibility. For example, user interaction in the basic system
is confined to textual information-no graphics, pictures,
or icons.

Secondly, we wanted to use a truly object-oriented pro­
gramming language, one that was type-safe. This, coupled
with our belief that the first tenet must apply even more strin­
gently to the tools than to the system being built, forced us

to design our own language and to construct its compiler as
well. It led to Oberon,4 a language derived from Modula-2 by
eliminating less essential features (like subrange and enu­
meration types) in addition to features known to be unsafe
(like type transfer functions and variant records).

Lastly, to be simple, efficient, and useful, we wanted a
system to be flexibly extensible. This meant that new mod­
ules could be added that incorporate new procedures
based on calling existing ones. It also meant that new data
types could be defined (in new modules), compatible with
existing types. We call these extended types, and they con­
stitute the only fundamental concept that was added to
Modula-2.

Type extension
If, for example, a type Viewer is defined in a module

called Viewers, then a type TextViewer can be defined as
an extension of Viewer (typically, in another module that
is added to the system). Whatever operations apply to
Viewers apply equally to TextViewers, and whatever prop­
erties Viewers have, TextViewers have as well.

Extensibility guarantees that modules may later be
added to the system without requiring either changes or
recompilation. Obviously, type safety is crucial and must
cross module boundaries.

Type extension is a typical object-oriented feature. To
avoid misleading anthropomorphisms, we prefer to say
"TextViewers are compatible with Viewers," rather than
"TextViewers inherit from Viewers." We also avoid intro­
ducing an entirely new nomenclature for well-known con­
cepts; for example, we stick to the term type, avoiding the
word class; we retain the terms variable and procedure,
avoiding the new terms instance and method. Clearly, our
first tenet-concentrating on essentials-also applies to
terminology.

Tale of a data type
An example of a data type will illustrate our strategy of

building basic functionality in a core system, with features
added according to the system's extensibility.

In the system's core, the data type Text is defined as char­
acter sequences with the attributes of font, offset, and
color. Basic editing operations are provided in a module
called TextFrames.

An electronic mail module is not included in the core,
but can be added when there is a demand. When it is
added, the electronic mail module relies on the core sys­
tem and imports the types Text and TextFrame displaying
texts. This means that normal editing operations can be
applied to received e-mail messages. The messages can be
modified, copied, and inserted into other texts visible on
the screen display by using core operations. The onlyoper­
ations that the e-mail module uniquely provides are receiv­
ing, sending, and deleting a message, plus a command to
list the mailbox directory.

Operation activation
Another example that illustrates our strategy is the acti­

vation of operations. Programs are not executed in
Oberon; instead, individual procedures are exported from
modules. If a certain module M exports a procedure P,
then P can be called (activated) by merely pointing at the

string M.P appearing in any text visible on the display, that
is, by moving the cursor to M.P and clicking a mouse but­
ton. Such straightforward command activation opens the
following possibilities:

1. Frequently used commands are listed in short pieces
of text. These are called tool-texts and resemble cus­
tomized menus, although no special menu software is
required. They are typically displayed in small viewers
(windows).

2. By extending the system with a simple graphics edi­
tor that provides captions based on Oberon texts, com­
mands can be highlighted and otherwise decorated
with boxes and shadings. This results in pop-up and/or
pull-down menus, buttons, and icons that are "free"
because the basic command activation mechanism is
reused.

3. A message received by e-mail can contain commands
as well as text. Commands are executed by the recip­
ient's clicking into the message (without copying into
a special command window). We use this feature, for
example, when announcing new or updated module
releases. The message typically contains receive com­
mands followed by lists of module names to be down­
loaded from the network. The entire process requires
only a few mouse clicks.

Keeping it simple
The strategy of keeping the core system simple but

extensible rewards the modest user. The Oberon core
occupies fewer than 200 Kbytes, including editor and com­
piler. A computer system based on Oberon needs to be
expanded only if large, demanding applications are
requested, such as CAD with large memory requirements.
If several such applications are used, the system does not
require them to be simultaneously loaded. This economy
is achieved by the following system properties:

1. Modules can be loaded on demand. Demand is signaled
either when a command is activated-which is
defined in a module not already loaded-or when a
module being loaded imports another module not
already present. Module loading can also result from
data access. For example, when a document that con­
tains graphical elements is accessed by an editor
whose graphic package is not open, then this access
inherently triggers its loading.

2. Every module is in memory at most once. This rule pro­
hibits the creation of linked load files (core images).
Typically, linked load files are introduced in operating
systems because the process oflinking is complicated
and time-consuming (sometimes more so than com­
pilation). With Oberon, linking cannot be separated
from loading. This is entirely acceptable because the
intertwined activities are very fast; they happen auto­
matically the first time a module is referenced.

The price of simplicity
The experienced engineer, realizing that free lunches

never are, will now ask, Where is the pricefor this economy
hidden? A simplified answer is: in a clear conceptual basis
and a well-conceived, appropriate system structure.

February 1995

If the core-or any other module-is to be successfully
extensible, its designer must understand how it will be
used. Indeed, the most demanding aspect of system design
is its decomposition into modules. Each module is a part
with a precisely defined interface that specifies imports
and exports.

Each module also encapsulates implementation tech­
niques. All of its procedures must be consistent with
respect to handling its exported data types. Precisely defin­
ing the right decomposition is difficult and can rarely be
achieved without iterations. Iterative (tuning) improve­
ments are of course only possible up to the time of system
release.

It is difficult to generalize design rules. If an abstract
data type is defined, carefully deliberated basic operations
must accompany it, but composite operations should be
avoided. It's also safe to say that the long-accepted rule of
specification before implementation must be relaxed.
Specifications can turn out to be as unsuitable as imple­
mentations can turn out to be wrong.

IN CONCLUDING, HERE ARE NINE LESSONS LEARNED from the
Oberon project that might be worth considering by any­
one embarking on a new software design:

1. The exclusive use of a strongly typed language was the
most influential factor in designing this complex sys­
tem in such a short time. (The manpower was a small
fraction of what would typically be expended for com­
parably sized projects based on other languages.)
Static typing (a) lets the compiler pinpoint inconsis­
tencies before program execution; (b) lets the design­
er change definitions and structures with less danger
of negative consequences; and (c) speeds up the
improvement process, which could include changes
that might not otherwise be considered feasible.

2. The most difficult design task is to find the most appro­
priate decomposition of the whole into a module hier­
archy, minimizing function and code duplications.
Oberon is highly supportive in this respect by carry­
ing type checks over module boundaries.

3. Oberon's type extension construct was essential for
designing an extensible system wherein new modules
added functionality and new object classes integrat­
ed compatibly with the existing classes or data types.
Extensibility is prerequisite to keeping a system
streamlined from the outset. It also permits the sys­
tem to be customized to accommodate specific appli­
cations at any time, notably without access to the
source code.

4. In an extensible system, the key issue is to identify
those primitives that offer the most flexibility for
extensions, while avoiding a proliferation of primi­
tives.

5. The belief that complex systems require armies of
designers and programmers is wrong. A system that
is not understood in its entirety, or at least to a signif­
icant degree of detail by a single individual, should
probably not be built.

6. Communication problems grow as the size of the
design team grows. Whether they are obvious or not,

Computer

when communication problems predominate, the
team and the project are both in deep trouble.

7. Reducing complexity and size must be the goal in
every step-in system specification, design, and in
detailed programming. A programmer's competence
should be judged by the ability to find simple solutions,
certainly not by productivity measured in "number of
lines ejected per day." Prolific programmers contribute
to certain disaster.

8. To gain experience, there is no substitute for one's own
programming effort. Organizing a team into man­
agers, designers, programmers, analysts, and users is
detrimental. All should participate (with differing
degrees of emphasis) in all aspects of development. In
particular, everyone-including managers-should
also be product users for a time. This last measure is
the best guarantee to correct mistakes and perhaps
also to eliminate redundancies.

9. Programs should be written and polished until they
acquire publication quality. It is infinitely more
demanding to design a publishable program than one
that "runs." Programs should be written for human
readers as well as for computers. If this notion con­
tradicts certain vested interests in the commercial
world, it should at least find no resistance in acade­
mIa.

With Project Oberon we have demonstrated that flexi­
ble and powerful systems can be built with substantially
fewer resources in less time than usual. The plague of soft­
ware explosion is not a "law of nature." It is avoidable, and
it is the software engineer's task to curtail it. I

References
1. E. Perra tore et aI., "Fighting Fatware," Byte, Vol. 18, No.4,

Apr. 1993, pp. 98-108.
2. M. Reiser, The Oberon System, Addison-Wesley, Reading,

Mass., 1991.
3. N. Wirth and J. Gutknecht, Project Oberon-The Design of an

Operating System and Compiler, Addison-Wesley, Reading,
Mass., 1992.

4. M. Reiser and N. Wirth, Programming in Oberon-Steps

Beyond Pascal and Modula, Addison-Wesley, Reading, Mass.,

1992.

Niklaus Wirth is professor of computer science at the Swiss
Federal Institute of Technology (ETH) in Zurich. He designed
the programming languages Pascal (1970), Modula (1980),
and Oberon (1988), and the workstations Lilith (1980) and
Ceres (1986), as well as their operating software.

Wirth received a PhD from the University of California at
Berkeley in 1963. He was awarded the IEEE Emmanue/Piore
Prize and the ACM Turing Award (1984). He was named a
Computer Pioneer by the IEEE Computer Society and is a For­
eignAssociate of the National Academy of Engineering.

Readers can contact the author at Institut fill' Computersys­
teme, ETH CH-8092 Zurich, Switzerland; e-mail wirth@
infethz.ch.

