Numerical Examples for Mercator Projection #
SPHERE #
Forward Equations #
Given
Radius of sphere: | $R=\;\;$ unit |
Central meridian: | $\lambda_0=\;$° |
Point: | $\phi=\;$° |
$\lambda=\;$° | |
Using equations (7-1) , (7-2), and (7-3),
$$ \eqalign {
x &= \pi\times1.0\times[(-75.0^\circ) - (-180.0^\circ)]/180^\circ \cr
&= 1.8325957\;\text{units}
} $$
$$ \eqalign {
y &= 1.0\times\ln\tan(45^\circ+35.0^\circ/2) = 1.0\times\ln\tan(62.5^\circ) \cr
&= 1.0\times \ln 1.9209821 = 0.6528366\;\text{units}
} $$
$$ h = k = \sec 35.0^\circ = 1/\cos 35.0^\circ = 1/0.8191520 = 1.2207746 $$
Inverse Equations #
Given: $R, \lambda_0$ for forward example
$x=\;$ units |
$y=\;$ units |
Using equations (7-4) and (7-5),
$$ \eqalign{
\phi &= 90^\circ - 2\arctan(\mathrm{e}^{-0.6528366/1.0}) \cr
&= 90^\circ - 2\arctan(0.5205670) \cr
&= 90^\circ - 2\times27.5^\circ =
35.0^\circ
} $$
$$ \lambda = (1.8325957/1.0)\times180^\circ/\pi+(-180.0^\circ)= -75.0^\circ
$$
ELLIPSOID #
Given:ellipsoid | $a=6378206.4\,\text{m}$ | |
$e^2=0.00676866$ | ||
or: | $e=0.0822719$ | |
Central meridian: | $\lambda_0=\;$° |
Forward Equations #
Point: | $\phi=$° | $\lambda=$° |
$$
x = 6378137.0000000\times[-75^\circ - (-180^\circ)] \times \pi/180^\circ= 11688546.53
$$
$$ \eqalign{
y &= 6378206.4\ln\left[\tan(45^\circ+35.0^\circ/2)\left(\frac{1-0.0822719\sin35.0^\circ}{1+0.0822719\sin35.0^\circ}\right)^{0.0822719/2}\right] \cr
&= 6378206.4\ln[1.9209821\times0.9961223] \cr
&= 6378206.4\ln 1.9135332 = 4139145.66
}
$$
$$ \eqalign {
k &= (1-0.0067687\sin^2 35.0^\circ)^{1/2}/\cos 35.0^\circ \cr
&= 1.2194146
}
$$
Inverse Equations #
Inversing forward example:
Given: $a, e, \lambda_0$ for forward example,
$x=\;$m |
$y=\;$m |
Using equation (7-10),
$$
t = \mathrm{e}^{-4139145.6/6378206.4} = 0.5225935
$$
From equation (7-11), the first trial $\phi$
$$
\phi = 90^\circ - 2\arctan 0.5225935 = 34.8174474^\circ
$$
Using this value on the right side of equation (7-9),
$$ \begin{align}
\phi =& 90^\circ - 2\arctan\{0.5225935[(1-0.0822719\sin34.8174477^\circ)/ \cr
& (1+0.0822719\sin34.8174477^\circ)]^{0.0822719/2} \} \cr
=& 34.9991681^\circ
\end{align}
$$
Replacing $ 34.8174477^\circ$ with $ 34.9991681^\circ$ for the second trial, recalculation using (7-9) gives $ 34.9999963^\circ$. The third trial gives $ 35.0000000^\circ$, which does not change (to seven places) with recalculation.
For $\lambda$, using equation (7-12),
$$
\lambda = 11688673.72/6378206.4\times 180^\circ/\pi+(-180^\circ) = -75.0000000
$$
Using equations (7-13) and (3-5) instead, to find φ,
$$ \eqalign {
\chi &= 90^\circ - 2\arctan 0.5225935 \cr
&= 90^\circ - 55.1825523^\circ \cr
&= 34.8174477^\circ
}
$$
using $t$ as calculated above from (7-10). Using (3-5), $\chi$ is inserted as in the example given above for inverse auxiliary latitude $\chi$
$$
\phi = 34.9999999^\circ
$$