Numerical Examples - Mollweide Projection

Numerical Examples for Mollweide Projection #

SPHERE #

Forward Equations #

Given

Radius of sphere: $R=\;\;$ unit
Central meridian: $\lambda_0=\;$°
Point: $\phi=\;$°
$\lambda=\;$°
Find $x, y$.

From equation (31-4), using $\phi$ or $ -50^\circ $ as the first trial $\theta’$,

$$ \eqalign{ \Delta\theta' =& -[(-50^\circ)+\sin(-50^\circ)-\pi\sin(-50^\circ)]/ \cr & [1+\cos(-50^\circ)]\times 180^\circ/\pi \cr =& -26.7818469^\circ } $$
The next trial $ \theta' = -50^\circ-26.7818469^\circ = -76.7818469^\circ $ . Using this in place of $ -50^\circ $ for $\theta’$ (not $\phi$) in equation (31-4), subsequent iterations produce the following:
$$ \eqalign{\Delta\theta' &= -4.3367097^\circ\cr \theta' &= -81.1185566^\circ \cr\Delta\theta' &= -0.1391597^\circ\cr \theta' &= -81.2577163^\circ \cr\Delta\theta' &= -0.000145^\circ\cr \theta' &= -81.2578612^\circ \cr\Delta\theta' &= 0^\circ} $$

Since there is no change to seven decimal places, using (31-5),

$$ \eqalign{ \theta &= -81.2578612^\circ/2 \cr &= -40.6289306^\circ } $$
Using (31-1) and (31-2),
$$ \eqalign{ x =& (8^{1/2}/\pi)\times1.0\times[-75^\circ-(-90^\circ)]\cos(-40.6289306^\circ)\times\pi/180^\circ \cr =& 0.1788845\text{ units} } $$
$$ \eqalign{ y &= 2^{1/2}\times1.0\times\sin(-40.6289306^\circ) \cr &= -0.9208758\text{ units} } $$

Inverse Equations #

Inversing forward example:

Given: $R, \lambda_0$, for forward example

$x=\;$ units
$y=\;$ units
Find $\phi, \lambda$.

Using equations (31-6) through (31-8) in order,

$$ \eqalign{ \theta &= \arcsin[-0.9208758/(2^{1/2}\times1.0)] \cr &= -40.6289311^\circ } $$
$$ \eqalign{ \phi &= \arcsin\{[2\times(-40.6289311^\circ)\times\pi/180^\circ +\sin[2\times(-40.6289311^\circ)]]/\pi\} \cr &= -50.0000005^\circ } $$
$$ \eqalign{ \lambda &= -90^\circ+\pi\times0.1788845/[8^{1/2}\cos(-40.6289311^\circ)]\times180^\circ/\pi \cr &= -74.999999^\circ } $$