248

A system program generator

D. Morris, I. R. Wilson and P. C. Capon

Department of Computer Science, The University, Manchester

This paper describes a self expanding program generator aimed at the general area of system
programming. A syntax directed scan is used for statement recognition. The set of statements

is extended by additions to the syntax tables.
(Received May 1968)

This system is intended for any application where close
control is required over the code compiled and the
storage organisation. System programming is in this
category. The basic instructions have one to one corre-
spondence with machine orders, being deliberately made
machine dependent for reasons of efficiency. However,
there is a macro facility which enables the user to define
the syntax and semantics of his own instructions. This is
in some ways similar to the facility for defining [AS]
formats in the Compiler Compiler (Brooker et al., 1963).
Some macros of general application are predefined
within the basic system. Careful choice of macros in
programs of universal interest (e.g. compilers) should
result in a high degree of machine independence. The
current implementation is on Atlas but a version for the
I.C.T. 1900 is under development. It is felt that the
system is a powerful programming tool and that through
its use ideas for more formal systems programming
languages will evolve. However, we realise that the
system may not be easy to learn and that it is little
more than an assembly language if used unimaginatively.

Symbols and editing conventions

The Atlas implementation will accept the input from
either cards or 7-track tape, but backspace is not per-
mitted on the latter. Some of the required symbols are
not available and are represented by symbol pairs, e.g.
#+ isrepresented by /= and # by —=. This description
observes the conventions of the Atlas implementation.

‘Newline’ usually terminates instructions, although
continuation may be indicated by a = symbol in column
80 of a card and immediately before the newline on paper
tape. In this case the 7 and newline are both edited out.

Comments are introduced by the symbol pair :: and
these symbols and the rest of the line are always edited
out. Continuation cannot be used on the same line as
a comment. Columns 1 to 8 on cards are also edited
out, but a check is made that the number they represent
is not less than the one for the previous card.

Erase symbols are edited out but spaces are not
(although multiple spaces and tabs are condensed to
single spaces) and can therefore be specified in the syntax
as separators. Redundant spaces are ignored by the
scanning routine.

The structure of a program
Programs have a textual block structure similar to

The Computer Journal Volume 13 Number 3 August 1970

ALGOL, thus any program can be enclosed in any
other program. This block structure delimits the scope
of names (e.g. labels) and macros. The scope of a label
is the block in which it is defined and any enclosed
block in which it is not redefined Thus non-local
reference to labels which are not redefined more locally
is permitted. The scope of macros and names used for
syntactic elements (synes) is similar but it extends into
sub-blocks up tothe textual point where they are redefined.
They must also be defined before any instructions (i.e.
macros) whose syntax they describe are used.

Because the basic language contains no dynamic
declaratives, control transfers across block boundaries are
not treated specially, but entry to a block is normally at
its beginning since its internal labels are inaccessible. It
is felt that this restriction will improve readability and
will be of value when dynamic declarations are intro-
duced as macros. A block is entered after executing the
preceding instruction unless this is a control transfer,
and no instructions are assembled for an ‘END’.

Using Backus Naur Form (Naur, 1963) the syntax of
a program is as follows:

(PROGRAMS> ::=(STATEMENTS) ENTER (EXPR>
{NL)>

(STATEMENTS) ::= (STATEMENT})|(STATE-
MENTS) (STATEMENT)

(STATEMENT) ::= (BASIC DECLARATIVE)|
(INSTRUCTION>

(BASIC DECLARATIVE) ::= (MACRO DEFN}|
(SYNE DEFN)|{COSYNE DEFN)

(INSTRUCTION ::= (LABEL>|<BASIC INSTRUC-
TIONY|(BLOCK>|¢{MACRO)

(BLOCK) ::= BEGIN (NL>STATEMENTS) END
<{NL)

(LABEL) ::= (NAME) :

The value associated with a name used as a label is the
usual one of the run time address of the next instruction.

(NAME) ::= (LETTER>|<KNAME)>{NAME
SYMBOL)

(LETTER) denotes any upper or lower case letter

(NAME SYMBOL) ::= (LETTER)|<DIGIT)|.

{DIGIT) denotes any decimal digit

{NL> denotes ‘newline’

(EXPR) is defined later, in the above context it specifies
the entry point of the program.

210z ‘2 8unr uo 1senb Ag /Blo'sjeuinolpiojxo’ jufwos//:dny wouy papeojumoq

http://comjnl.oxfordjournals.org/

A system program generator 249

An example of a program structure is
START: - - — — :: THIS IS THE ENTRY POINT

BEGIN
L1:L2: ———-
INT. STEP: BEGIN

END
FINISH: END

ENTER START

The basic instructions are highly machine dependent
and we shall discuss first the basic declaratives.
Although there are only three of these an important
use of the macro facility will be to define further
declaratives.

Syntactic elements

Syntactic elements are defined by means of metalin-
guistic formulae similar to those which have been used
above. Their function is in condensing the syntactic
part of macro definitions and steering the scanning
algorithm which identifies statements. The names used
for synes have the same structure as label names and
must be distinct from all label names within their scope.
Syne definitions differ from the notation of the Backus
Naur form, used earlier, in the following ways:

(1) Stylistic difference—The word SYNE must precede
each definition and ::= is replaced by =

(2) Differences in ordering—The order of alternatives
and of elements within alternatives are both
different. Syne formulae are used by a left to
right scanning algorithm which requires that:

(a) Any alternative which is a stem of another
comes after it.

(b) If one alternative is a special case of another
it must come first.

(¢) In recursive definitions there must be at least
one leftmost element not recursive.

(3) Metalinguistic Bracketing—several alternatives
may be specified as an element of another by
enclosing them in square brackets. This device
has been used by Iverson (1964), Burkhardt (1965)
and others.

For example the definition of (STATEMENTS) given
earlier might take the form

SYNE (STATEMENTS)=(STATEMENT) [(STATE-
MENTS}|<{NULL)]

Where (NULL) indicates an empty string.

For both semantic and syntactic reasons it is con-
venient to be able to interrupt the scanning algorithm
at defined points and execute code provided by the user.
This is achieved by inserting an element into the syntax
which is apparently a syne but is in fact defined as the
name of a section of code (COSYNE) to be executed
when the scanning algorithm reaches that point. A
cosyne definition has the form,

COSYNE (NAME.IN.SHARP.BRACKETS>{NL)
(STATEMENTS) END <(NL)

where the (STATEMENTS) are treated as a block.
To make this facility more flexible the cosyne routine
may have one numeric parameter the value of which is
defined explicitly wherever the cosyne is used thus:

{cosyne name (numeric parameter)>

One example of the use of a cosyne is illustrated by
the cosyne (SYM) which is preloaded into the system.
This checks that the next symbol to be scanned is equal
to its parameter. Thus (SYM((A))> is equivalent to A.*
For the metalinguistic symbols ¢ > [1| which cannot
be used to represent themselves, it is essential to use
SYM(Q), <SYMO), <SYMD), <SYMD,
SYM(()y or <O, O D <Dy (>, which are
acceptable shorthand for these five cases. The con-
ventions which a cosyne routine must observe are
described later.

A description of the internal form of syne definitions
and the scanning algorithm will clarify the above. The
general form of the syne definition is

SYNE <NAME> = 0112 - - dlnl‘a21d22 e a2n2| . e |

1 %m2 + + Fmng,

where m is the number of alternatives.
n; is the number of elements in alternative i.
a;; is element j in alternative i,

The o’s are symbols, synes, cosynes oOr compound
elements comprising further sets of alternatives within
sharp brackets. A branch element (B) is introduced
internally in order to represent the definition linearly.
It indicates the position of the next alternative if the
scan fails to match on subsequent elements. Thus the
internal form of a syne definition is

1 v v v

Bioii®iz - - %y Baota %2+« Oopy e v+ s 1 Em2 e - Fmnm

where B; is the address of B, 1 (OF & ifi=m—1)
Any « which is compound will have the same structure
provided it is the last element of an alternative. When
it is not the last element of an alternative, an additional
element is added at the end of the first m — 1 alternatives
of the compound element, to link them to what follows.
It is a merge element (&). Note that, for this purpose,
the element ceases to be the last element if an & is added.
For example,

SYNE (X> = A[B[C|D]|[D|CIF]

meaning ABC, ABD, ADF or ACF would be repre-
sented by

R I
| | ol !
ABBBCDBD%CI:

If a further element Y(say) were added to the definition

of (X) giving,
SYNE <X)> = A[B[C|D]|[D|C]F]Y

* (A) is a form of numeric constant, more fully described in
a later section. Its value is the internal code for A.

210z ‘2 8unr uo 1senb Ag /Blo'sjeuinolpiojxo’ jufwos//:dny wouy papeojumoq

http://comjnl.oxfordjournals.org/

250 D. Morris, et al.

its internal form would be

|
ABBBC&D & B
1

l

|

4
D & CF Y
']

For the purpose of scanning therefore a syne definition
consists of a string of five types of element which cause
the scanning routine to behave as follows:

(1) SYMBOL—The action of the scan in this case is
to compare the symbol in the source string with
that in the syne. If they are the same the pointers
in both are advanced and the next element is
examined. If they differ all points are reset from
the branch stack and the next symbol is examined.
An exception to this occurs if the source string
contains a space. In this case the space is skipped
and the comparison is repeated.

(2) BRANCH (B)—All relevant points are stacked in
case the alternative branch has to be explored.

(3) SYNE—When a syne is encountered the position
in the current syne definition is noted and the syne
string pointer is reset to the new syne definition.
The scan is then continued.

(4) COSYNE—Control is transferred to the associated
subroutine.

(5) MERGE (&)—The pointer in the syne is moved
to the new position.

Obviously in the above no record is kept of the way
in which the source string fits the syne definitions. Also
there is no way of recognising the end of an alternative.
Both these functions are performed by cosynes. A
terminal cosyne is required at the end of every alternative
in a syne definition. This should generate the required
record and end by transferring control to a specified
point in the scanning routine, where the stack will be
adjusted and the scan continued in the syne definition
one level up. Three terminal cosynes are built into the
system, they may be used as models for others. The
first is UP which causes the scan to continue at the syne
definition one level up and generates no analysis record.
The other two, VAL and EXVAL generate an analysis
record which has a tree structure similar to the one
produced by the Compiler Compiler (Brooker et al.,
1962). VAL, if used consistently, will produce a struc-
ture identical to that of the Compiler Compiler where
the parameter supplied to VAL represents the category
number of the alternative it terminates. EXVAL, will
extend the value into a triplet of words but otherwise
generates the same kind of tree structure. Here one
word is the value of the parameter and the other two
are the addresses of the first and last symbols in the
current line, which have been identified as matching the
syne. In the first example quoted above terminal
cosynes should be inserted as follows

SYNE (X)> = A[B[C{VAL(0)>| D{VAL(1)>]|
[D|CIECVAL(2))]

It is interesting to note that when compound elements
appear in non-terminal positions there are fewer terminal
values than alternatives. If it is necessary to distinguish
between such alternatives, cosynes may be introduced
which make entries in the analysis record but do not

perform terminal functions. Two such cosynes which
may prove to be of general use are IN and SQ. IN
inserts the number given as a parameter into the current
level of the analysis record and comparison is continued
with the current syne definition. SQ is used for optional
symbols. It inserts (in the same manner as IN) a ‘I’
or a ‘0’ according to whether the symbol whose code is
specified by its parameter is recognised or not.

Terminal cosynes have been omitted from the syne
definitions which appear in the body of this text where
only the syntax is relevant.

Macros

A macro definition consists of the word MACRO
followed by a heading which defines its syntax. This
has the same form as an alternative in a syne definition.
The current set of macros are the alternatives in the
definition of the pseudo syne (MACRO) which was
mentioned earlier in defining the instructions which may
appear in a program. When the end of a block is
reached all macros defined in that block are deleted.
The ordering of the macros in the syne (MACRO) is
the reverse of the order in which they are defined. This
means that if macros are redefined the most recent
definitions are used. An example of a macro heading is

MACRO OUTPUT ((SYMBOL STRING}>) ON
OUTPUT (NUMBER) (NL}>

The synes which appear in a macro heading are called
parameters. If they have some semantic meaning, as
the first two above obviously have, they are termed
functional. Non-functional parameters may be used to
permit stylistic variants in a macro, as <JUMP) is
below.

SYNE <JUMP) = JUMP TO <UP) | GO TO <UP)|

— O <UP)
MACRO (JUMP)(LABEL){NL)

The choice of (UP) as the terminal cosyne above means
that no record will be generated for (JJUMP) during the
scan of instructions in which it appears, such a dis-
tinguishing record being unnecessary. A better way
of defining the syntactic description of the macro would
be

MACRO [JUMP TO | GO TO | —(>>] (LABEL)(NL)>

The meaning of a macro is defined by a subroutine
to which control is transferred whenever the scan
matches an instruction with the macro heading. This
routine is written immediately after the heading and is
terminated by an END. Like cosyne routines macro
routines are recorded as a part of the assembler stack
and are distinct from any object code which is being
assembled. They are both regarded as blocks.

Preloaded macros

Some macros perform a declarative function, and their
associated routines record information to be used by
other macro routines. This creates a requirement for
a set of global variables comimon to all macro routines.
Cosyne routines may also use these same variables. The
names BO to B255 are reserved for use in this way and

210z ‘2 8unr uo 1senb Ag /Blo'sjeuinolpiojxo’ jufwos//:dny wouy papeojumoq

http://comjnl.oxfordjournals.org/

A system program generator 251

must not be redefined. Some of these are important
pointers in the system and have alternative names. On
Atlas B-lines 0 to 127 correspond to names BO to B127
and the rest of the global names are allocated space in
the core store.

Macro routines also have a requirement for local
variables. Since recursion is permitted they must occupy
space in the main working stack. The following pre-
loaded macro meets this need.

MACRO ASSIGN <(ASS.LIST){NL)»
where

SYNE (ASS. LIST> = (S.VAR) [(ASS. LIST)|
(NULL)]

¢S. VAR) denotes a name, possibly labelled (see

below), which must be enclosed in sharp brackets.
The effect of this macro is partly declarative in so far
as it adds the names to the name list and assigns values
to them which are the addresses of the associated stack
positions, relative to SB. SB is a stack base pointer
which points to the start of the area of the main working
stack allocated to the current block or macro. The
ASSIGN macro also causes instructions to be compiled
which move a stack front pointer (SF) forwards by the
appropriate amount. The scope of these names is con-
fined to the macro in which they are defined. Any
name used as an ¢(S.VAR)> may be labelled with an
integer, thus:

{name/integer)
e.g. <Z/2)

The label on an (S.VAR) used in this context causes
several additional stack positions to be allocated to the

name. Thus
ASSIGN (X> <Y <Z/9)

assigns one position to X, the next to Y, the next to Z
and the next nine also to Z. The label in the context
described below is used to identify individual positions
in this nine.

The ASSIGN macro must not be used inside a cosyne
routine.*

In order to describe the preloaded macros for register
manipulation and control functions it is necessary to
give a detailed description of their main constituents.
These are (VAR) and (EXPR), where the definition of
(VAR) is

SYNE (VAR> = (G.VAR)|{[)(ADDR){]>|(S.VAR)

{G. VAR) denotes the register associated with any of
the predefined global register names (B1, SF, etc.), and
[(ADDR)] denotes the store register whose address is
given by the value of (ADDR). (ADDR}) is a restricted
form of expression and is implemented by using B-modi-
fication. Its definition is

SYNE (ADDR} = (VAR) [[+|—] (LIT)|{NULL)]|
(SQ((—))><LIT

+ addition — subtraction
V logical or — = logical non equivalence
| division < logical shift up

{+ arithmetic shift up
= circular shift down

+> arithmetic shift down

where (LIT) is a literal defined later. The third alter-
native ¢(S. VAR) is the method of referring to stack
variables defined in the ASSIGN macro. The notation
for these is again the name (possibly labelled) in pointed
brackets, as in the ASSIGN statement, for example,
(X)> (Z/3>. Their meaning is

(X> = [SB + X]
(Z/3> = [SB + 1.4Z]

An expression is essentially a sequence of operators
(OPR) and operands (OP), defined as:

SYNE (EXPR)> = (OP> (REPEAT.IF.OPR)>

where (REPEAT.IF.OPR) is a cosyne which causes the
scan to search for another (OP) if an operator is
recognised and terminates the scan for an (EXPR) if
not. The possible types of operator symbols and the
corresponding meanings are given in Fig. 1.

To avoid possible ambiguities the recognition mechanism
requires that double symbol operators must be juxta-
posed. Use of these operators does not invoke any
precedence rule, and an expression is evaluated from left
to right. For example,

Bl x B2 — B3/B4 4 BS
is evaluated as
((B1 x B2) — B3)/B4) + B5

The three kinds of operand (OP) may appear in an
expression, variables (VAR), constants (CONST) and a
very restricted form of subexpression. These are defined
by:

SYNE <OP) = (VAR)|KLIT)>|({VAR)[+]—]
(CONST))
SYNE (LIT> = (CONST)|({NAME)|(EXPR)’

SYNE (CONST) = (N>|<N».{OD)|<OD)|
((SYMBOL))|*(OW) *

When an expression is used as a literal (e.g. ‘(EXPR)’)
it is evaluated at assembly time. The various forms for
(CONST) follow the usual Atlas terminology:

(N> denotes a decimal integer, its scaling will be such
that it addresses words of instruction size (i.e. unity is
three bits up on Atlas).

{OD}> denotes an octal digit which goss into the bottom
three bits.

(OW)> is a sequence of octal digits which will be left
Jjustified.

(SYMBOL) is any available symbol and ((SYMBOL))
denotes the number whose value corresponds to the code
for the symbol.

A “*’, not followed by any octal digits is taken to be

* The reason for this is that cosynes are blisters of the scanning
routine and the next free stack space relative to SB for the scanning
routine would not be known at assembly time. A suitably dynamic
version could be defined for use in this context.

& logical and

x multiplication

— logical shift down
< circular shift up

Fig. 1. The meanings of the operator symbols

210z ‘2 8aun uo 1senb Aq /610°sfeuinopioyxo’ jufwod//:dny woiy pepeojumodg

http://comjnl.oxfordjournals.org/

252 D. Morris, et al.

a label whose value is the address of the instruction being
assembled.

Any (NAME) used in a (LIT) is replaced by its
assembly time value. It will not normally be the name
of a syne or cosyne, but if it is the value will be the
address of the encoded definition. If it is an S.VAR
name, which is again unlikely, the value is the relative
address of the associated register. Because (VAR) and
hence {G.VAR) appear before (LIT) a global name
cannot appear as a form of constant except in ‘(EXPR’.
Thus the most common form of (NAME) in (LIT) is
a label which will have an address as its value. In
general these may be forward references (i.e. labels not
yet set) except when they are part of a literal expression
(i.e. <EXPR)’).

Expressions usually appear in a context which implies
the assembly of code to evaluate the expression at run
time. This assembled code will in general require the
use of two registers for partial results and addresses.
The Atlas implementation uses B98 and B99.

We can now define the macros for register manipula-
tion and control functions. The first is for assigning
the value of an expression to a variable. It is

MACRO (VAR> (ASS.OPR> (EXPR) (NL)>

where (ASS.OPR) is a cosyne which accepts any of the
above operators or = or =—.

When the (ASS.OPR) is an operator the macro is
interpreted as an expression and the left to right evalua-
tion is taken to include the specified (VAR)> and
(ASS.OPR}. The resultant value of the expression is
assigned to the (VAR). Examples are

Bl +B2 x 4 Bl=—B3+2 Bl = B4/B5
meaning
Bl = (Bl +B2) x4 Bl =— (B3 +2) Bl = B4/B5

In some forms of this macro it is assumed that the
register on the left-hand side can be used to accumulate
the result. This means it must not appear in the expres-
sion. For example

Bl = B2 + Bl
is not allowed. Instead it should be written
Bl + B2

The second macro involving EXPR permits conditional
control transfers. Control is passed to the address
specified by an EXPR or to the following instruction
according to whether or not the given condition is
satisfied. Since the limitations of the character set do
not permit a full range of conditions, the condition may
be qualified by IF or UNLESS. The second of these
reverses the meaning of the condition. The macro is

MACROCIUEXPR)>(CONDITION>, —(>>
(EXPR)>(NL}

where
SYNE <IU» = IF | UNLESS
and

SYNE (CONDITION) = ¢>50[¢{>0| = 0|/ = 0

There is also a macro which provides an absolute control
transfer. It is not recommended that control (B127) be
changed using the first (register setting) macro, as this
may use the L.H.S. as local workspace. The control
macro transfers control to the address given by an
expression. It is

MACRO — X EXPR)NL)

Those control transfers which require special mention are

(a) exit from a macro routine

(b) ‘true’ exit from a cosyne routine

(c) ‘false’ exit from a cosyne routine

(d) ‘up’ exit from a terminal cosyne routine

The values of the predefined labels EXIT, TRUE and
FALSE are the required addresses. The labels should
not be redefined. Thus the instructions take the form

— EXIT
— TRUE
— FALSE
— UP

The last instruction transfers control to the cosyne UP.

The macros above suffice for manipulating the analysis
records generated by the ‘VAL’ cosynes but an additional
macro is preloaded to facilitate the association of
(8.VAR}’s with the subtrees of this type of analysis
record.
This is

MACRO SET <ASS.LIST) FROM <(EXPR>

It assumes that the value of the (EXPR) is the address
of a tree having the structure of Fig. 2.

The specified (S.VAR)’s are set to the addresses of
consecutive subtrees. There is no check for illegal use.
An example of the use of this macro is given below,
but it is necessary first to describe a preloaded macro
which enables macro routines to call dynamically the
routines associated with other statements (e.g. in order
to define the macro in terms of simpler ones). This is
achieved by using the macro

MACRO * (STATEMENT)

When a * macro is assembled the (STATEMENT) is
processed by the scanning routine and an analysis record
is generated. The (STATEMENT) need not be explicit;
stack variables of the same name may be substituted for
any of the synes appearing in the definition of the
(STATEMENT). Thisis also true of cosynes provided
they generate the standard tree form of analysis record.
Wherever a stack variable appears the analysis record

|
i
I

l

|
[v v
... 1 & & ... & [lIst subtree] [2nd subtree] [last subtree]

Fig. 2. Assumed value of (EXPR>

210z ‘2 8unr uo 1senb Ag /Blo'sjeuinolpiojxo’ jufwos//:dny wouy papeojumoq

http://comjnl.oxfordjournals.org/

A system program generator 253

will be incomplete. When the * statement is executed
the analysis record is copied into the stack, it is relocated
and completed by substitution of the current value of
the S.VAR. Then the associated routine is called. To
facilitate the relocation of the analysis record the
{(STATEMENT) is scanned twice and the two analysis
records are compared. It is assumed that all words
which differ are dependent on the position of the analysis
record and a bit pattern is generated containing this
information. In this macro all forms of (STATE-
MENT) are permissible substitutions but none are
treated specially. Thus if it is required to call all of
the routines associated with the statements of a block
each one must be ‘starred’. The example, Fig. 3. we now
give is intended to illustrate the less obvious features of the
system, and is probably not typical of the type of macro
the user would write. It is a more general conditional
macro which either obeys a (STATEMENT) or transfers
control to the following instruction, according to the
result of comparing two expressions. In this macro
the only variants of (STATEMENT) allowed are
(BASIC.INST), BEGIN and {MACRO). The asso-
ciated routine deals with BEGIN in a special manner
in order that the following block may be treated as the
{STATEMENT) and not executed if the condition fails.

This example makes use of the fact that, on entry to
a macro routine, the analysis record is in the stack behind
the links. Also, it assumes that the definitions of the
synes in the macro heading have been terminated by
cosynes of the VAL type, which generate a branch for
each syne at the top level. Thus the SET macro would
be translated into,

AUy — [[SB—.4] + .4]
(EXPR) — [[SB—.4] + 1]
(COMPARATOR) = [[SB—.4] + 1.4]
(EXPR/1> = [[SB—.4] + 2]
(STATEMENT> = [[SB—.4] + 2.4]

B131, B132and B139 contain the addresses of the BEGIN,

SYNE (COMPARATOR) = (|| = | =

(BASIC INSTRUCTION) and {MACRO) routines,
respectively.

Two statements which appear in the above example
require further discussion. FAULT PRINT represents
an instruction sequence which would cause appropriate
monitoring. SET ‘END’ LINK TO L4 changes the
link associated with ‘BEGIN’ so that control will go to
L4 when the matching ‘END’ is encountered.

Thus the sequence is entered when the END of the
block appearing in the conditional macro is reached.
Both of these statements could be defined as macros
and as an example of a simple macro we define the
second.

MACRO SET ‘END’ LINK TO (EXPR>{NL)
ASSIGN (EXPR)
SET (EXPR)> FROM [SB—.4]

* [B189—.4] = (EXPR)
.- THIS INST ASSUMES A KNOWLEDGE
::— OF THE POSN OF THE ‘END’ LINK
— EXIT
END

Finally three preloaded macros are provided for output
of integers, input of integers and output of symbol strings.
These are

MACRO PRINT (EXPR)> TO (<EXPR)» PLACES ¢{NL»
MACRO READ INTEGER TO (VAR)

and
MACRO OUTPUT —<(P.STRING)
where

(P.STRING) denotes any string of symbols and
{S.VAR)’s

The action of the first of these is to print out the
number given by the first expression, preceded by a
‘minus’ sign if negative and a space if positive. The

MACRO {dUYEXPR>{COMPARATOR)>(EXPR}, (STATEMENT)
ASSIGN <IUYEXPR/1>{COMPARATOR)>{STATEMENT»{CONDITION>»
SET {IUY»{EXPR)>(COMPARATOR)>{EXPR/1>(STATEMENT) FROM [SB-.4]

(CONDITION> = (COMPARATOR>
* BEGIN

* B99 = (EXPR/1)

B99 = — B99

B99 + (EXPR)

* ¥ *

L2: * (STATEMENT)
— L4
L1: * BEGIN
SET ‘END’ LINK TO 14
— EXIT
L3: FAULT PRINT
14: * 11
* END
— EXIT
END

(IU> B99 {CONDITION>, L1
IF [(STATEMENT)] — BI31 =0, —L1 ::
IF [(STATEMENT)] — B132 =0, L2 ::
IF [(STATEMENT)] — B139 /=0, —L3 ::

PLANT CONDITIONAL JUMP
JUMP IF ‘BEGIN’

JUMP IF (BASIC. INSTR)
JUMP IF NOT (<MACRO)

:: END CAUSES RE-ENTRY HERE

Fig. 3. Example of a more general conditional macro

210z ‘2 8unr uo 1senb Ag /Blo'sjeuinolpiojxo’ jufwos//:dny wouy papeojumoq

http://comjnl.oxfordjournals.org/

254 D. Morris, et al.

second expression gives the field size (—1 for the sign).
The action of the second macro is to read the next
integer into the specified variable. The first appearance
of either the PRINT or the READ macros in the program
being assembled causes the insertion of a subroutine.
Subsequent use causes only a call for the subroutine to
be assembled. If they are used in macros a call for the
SPG copy of the READ or PRINT routine is inserted.
When an OUTPUT macro is assembled a packed
symbol string is generated. Wherever a stack variable
appears in the <P.STRING) a marked code word is
stored. On execution of the macro the string is
examined and, if necessary, the symbol strings asso-
ciated with the stack variables are substituted for the
code words before the string is output. One use of this
macro would be to output object program (perhaps in
the code of some other machine), rather than assembling
it for ‘load and go’. All synes (i.e. S.VAR’s) which
appear in an OUTPUT macro must be defined using
the EXVAL terminal cosyne. The additional value
words this produces are used by the OUTPUT macro
routine to locate the strings to be substituted. A
similar macro for use in input of symbol strings may
prove to be useful. This would generalise the * macro
by storing the symbol string instead of the analysis
record of the statement, and the scanning would be
carried out at execution time of the enclosing macro.

The basic instructions

In the Atlas implementation these have the form:
(FD) <B) <B)> <(ADDRESS)

(FD) is the function digits of the required instruction
and
SYNE(B) = <(N)|<EXPR}’

The (B)’s are the B-line modifiers of the instruction and
the B-line number specified is taken to be the number
(N> or the assembly time value of the (EXPR)
(modulo 127).

The ¢(ADDRESS) specifies the address half of the

References

instruction. It consists of a sequence of literals separated
by + or — and is defined as,

SYNE (ADDRESS) = (LIT> (REPEAT.IF.P.OR.M>

where (REPEAT.IF.P.OR.M) is a cosyne which causes
the scan to search for another (LIT) if a 4+ or — is
found and terminates the scan for an {(ADDRESS)
if not.

Preloaded macros in source program

The above description of the preloaded macros is
mainly relevant to the use of macros within macro or
cosyne definitions. However, use of the following
macros is also permitted in the source program:

MACRO (VAR) (ASS.OPR)» (EXPR) (NL)

MACRO {IU) <EXPR) ¢<COND», —{>> <EXPR>
<NL)

MACRO —)> <EXPR) (NL»

MACRO ASSIGN <(ASS.LIST) {NL>

Conclusion

The aim has been to produce a system which is compact
and efficient whilst being easily expandable in a number
of directions. Its size on Atlas is 1-5K words and
compilation speeds of 20K instructions per minute have
been achieved. An additional set of macros specifically
aimed at generating syntax directed compilers is available
and the system has been implemented using itself as a
test of its flexibility. Currently ALGOL and COBOL
compilers are being written.

Acknowledgements

We are indebted to our colleagues, and friends at the
SRC Atlas Lab., Chilton, for helpful criticism and
comments.

One of us (I. R. Wilson) wishes to acknowledge the
financial support of SRC during the period of research
which led to this paper.

BROOKER, R. A., MACCALLUM, I. R., MoRrRis, D., and RoHL, J. S. (1963). The Compiler Compiler, Annual Review in Automatic

Programming, Vol. 3, London: Pergamon.

BROOKER, R. A., Morris, D., and RoHL, J. S. (1962). Trees and Routines, The Computer Journal, Vol. 5, p. 33.
BURKHARDT, W. H. (1965). Metalanguage and Syntax Specification, CACM, Vol. 8, No. 5, p. 304.

Iverson, K. E. (1964). A Method of Syntax Specification, CACM, Vol. 7, No. 10, p. 588.

NAUR, P. (Ed.) (1963). Revised Report on the Alogrithmic Language ALGOL 60, The Computer Journal, Vol. 5, p. 349.

210z ‘2 8unr uo 1senb Ag /Blo'sjeuinolpiojxo’ jufwos//:dny wouy papeojumoq

http://comjnl.oxfordjournals.org/

