Numerical Examples for Auxiliary Latitudes
# For all examples under this heading, the Clarke 1866 WGS-84
ellipsoid will be used.$a=6378206.4\,\text{m}$ a is not needed here $e^2=0.00676866$ or: $e=0.0822719$
Auxiliary latitudes will be calculated for geodetic latitude $\phi =$ °
Using closed equation (3-1) :
$$
\eqalign{
\chi =& 2\arctan\{\tan{(45^\circ + 40^\circ/2)}[(1-0.0822719\sin{40^\circ})/(1+0.0822719 \cr
& \sin{40^\circ})]^{0.0822719/2}\}-90^\circ \cr
=& 2\arctan\{ 2.1445069 [0.8995456]^{0.0822719/2} \} -90^\circ \cr
=& 2\arctan(2.1351882) - 90^\circ \cr
=& 2\times 64.9042961^\circ - 90^\circ \cr
=& 39.8085922^\circ
}
$$
Using series equation (3-2) , obtaining $\chi$ first in radians, and omitting terms with $e^8$ for simplicity:
$$
\eqalign{
\chi =& 40^\circ\times\pi/180^\circ-(0.0067687 + 5 \times 0.0067687^2/24 + 3 \times 0.0067687^3/32)\times \sin(2\times 40^\circ)+ \cr
& (5 \times 0.0067687^2/48 + 7 \times 0.0067687^3/80)\times \sin(4\times 40^\circ)- \cr
& (13 \times 0.0067687^3/480) \times \sin(6\times 40^\circ) \cr
=& 0.6981317 - (0.0033891)\times 0.9848078 \cr
& (0.0000048)\times 0.3420201 - (0.0000000)\times (-0.8660254) \cr
=& 0.6947910\;\textrm{radian} = 39.8085923^\circ
}
$$
For inverse calculations, using closed equation (3-4) with iteration and given $\chi$= ° , find $\phi$:
First trial:
$$
\eqalign{
\phi =& 2\arctan\{\tan (45^\circ+ 39.8085923^\circ/2) [(1+0.0822719\sin 39.8085923^\circ)/ \cr
& (1-0.0822719\sin 39.8085923^\circ)]^{0.0822719/2} \} - 90^\circ \cr
=& 2\arctan\{2.1351882 [1.1112023]^{0.0411359} \} - 90^\circ \cr
=& 129.9992367^\circ - 90^\circ \cr
=& 39.9992367^\circ
}
$$
Second trial:
$$
\eqalign{
\phi =& 2\arctan\{ \tan (45^\circ+ 39.8085923^\circ/2) [(1+0.0822719\sin{39.9992367^\circ}/ \cr
& (1-0.0822719\sin{39.9992367^\circ})]^{0.0411359}\}-90^\circ \cr
=& 2\arctan(129.9999971^\circ)-90^\circ = 39.9999971^\circ
}
$$
The third trial gives $ 40.0000001^\circ $ also given by the fourth trial.
Using series equation (3-5) :
$$
\eqalign{
\phi =& 39.8085923^\circ\times \pi/180^\circ \cr
& +(0.0822719^2/2 + 5\times 0.0822719^4/24 + 0.0822719^6/12)\sin(2\times 39.8085923^\circ) \cr
&+ (7\times 0.0822719^4/48 + 29\times0.0822719^6/240)\sin(4\times 39.8085923^\circ) \cr
&+ (7\times 0.0822719^6/120) \sin(6\times39.8085923^\circ) \cr
=& 0.6947910 + (0.0033939)\times 0.9836256 \cr
&+ (0.0000067)\times 0.3545461 \cr
&+ (0.0000000)\times (-0.8558300) \cr
=& 0.6981317\;\text{radian} = 40.0000001^\circ
}
$$
Isometric latitude
# Using equation (3-7) :
$$
\eqalign{
\psi =& \ln\{\tan(45^\circ+40^\circ/2)[ (1-0.0822719\sin(40^\circ)/(1+0.0822719\sin(40^\circ)]^{0.0822719/2} \} \cr
=& \ln2.1351882 \cr
=& 0.7585548
}
$$
Using equation (3-8) with the value of $\chi$ resulting from the above examples:
$$
\eqalign{
\psi =& \ln\tan(45^\circ + 39.8085923^\circ/2) \cr
=& \ln(2.1351882) \cr
=& 0.7585548
}
$$
For inverse calculations, using equation (3-9) with $\psi$= :
$$ \begin{align}
\chi &= 2\arctan\mathrm{e}^{0.7585548} - 90^\circ \\
&= 2\arctan(2.1351882) - 90^\circ \\
&= 39.8085933^\circ
\end{align}
$$
From this value of $\chi, \phi$; may be found from (3-4) or (3-5) as shown above.
Using iterative equation (3-10) , to find $\phi$:
First trial:
$$
\eqalign{
\phi &= 2\arctan\mathsf{e}^{0.7585548} - 90^\circ \cr
&= 39.8085933^\circ \text{, just as above}
}
$$
Second trial:
$$
\eqalign{
\phi =& 2\arctan\mathrm{e}^{0.7585548}[(1+0.0822719\sin 39.8085933^\circ)/(1-0.0822719 \cr
& \sin 39.8085933^\circ)]^{0.0822719/2} - 90^\circ \cr
=& 2\arctan (2.1351882\times 1.0043469) - 90^ \circ \\
=& 39.9992376^\circ
}
$$
Third trial:
$$
\eqalign{
\phi =& 2\arctan\mathrm{e}^{0.7585548}[(1+0.0822719\sin 39.9992376^\circ)/(1-0.0822719 \cr
& \sin 39.9992376^\circ)]^{0.0822719/2} - 90^\circ \cr
=& 39.9999981^\circ
}
$$
Fourth trial, substituting: $39.9999981^\circ $ in place of $39.9992376^\circ $
$$
\phi=40.0000011^\circ
$$
Authalic latitude
# Using equations (3-11) and (3-12) :
$$
\eqalign{
q =& (1-0.0067687)\{ \sin40^\circ/(1-0.0067687\sin^240^\circ)- \cr
& [1/(2\times0.0822719)]\ln[(1-0.0822719\sin40^\circ)/(1+0.0822719\sin40^\circ)]\} \cr
=& 0.9932313\;(0.6445903 - 6.0774092\ln 0.8995456) \cr
=& 1.2792602
}
$$
$$
\eqalign{
\beta =& \arcsin(1.2792602/1.9954814) \cr
=& \arcsin(0.6410785) \cr
=& 39.8722878^\circ
}
$$
$$
\eqalign{
\beta =& \arcsin(1.2792602/1.9954814) \cr
=& \arcsin(0.6410785) \cr
=& 39.8722878^\circ
}
$$
Determining $\beta$ from series equation (3-14) involves the same pattern as the example for equation (3-5) given above.
For inverse calculations, using equation (3-17) with iterative equation (3-16) , given $\beta$= °,
and $q_p = 1.9954814$ as determined above:
$$ \begin{align}
q &= 1.9954814\sin39.8722878^\circ \\
&= 1.2792603
\end{align}
$$
First trial:*1
$$
\eqalign{
\phi &= \arcsin(1.2792602/2) \cr
&= 39.7642444^\circ
}
$$
Second trial:
$$
\eqalign{
\phi =& 39.7642444^\circ + (180^\circ/\pi)\{[(1-0.0067687\sin^2 39.7642444^\circ)^2/(2\cos 39.7642444^\circ)] \cr
& [1.2792602/(1-0.0067687) - \sin 39.7642444^\circ/ (1-0.0067687\sin^2 39.7642444^\circ) \cr
&+[1/(2\times0.0822719)]\ln[(1-0.0822719\sin39.7642444^\circ) \cr
&/(1+0.0822719\sin39.7642444^\circ))]]\} \cr
=& 39.9996022^\circ
}
$$
Third trial, substituting $39.9996022^\circ$ in place of $39.7642444^\circ$
$$
\phi=40.0000000^\circ
$$
Finding φ from β by series equation (3-18) involves the same pattern as the example for equation (3-5) given above.
Rectifying latitude
# Using equations (3-20) and (3-21)
$$
\eqalign{
M =&a[(1-0.0067687/4-3\times 0.0067687^2/64 - 5\times 0.0067687^3/256)\times 40^\circ\times\pi/180^\circ \cr
&-(3\times 0.0067687/8+3\times 0.0067687^2/32 +45\times0.0067687^3/1024)\sin(2\times40^\circ) \cr
&+(15\times 0.0067687^2/256 +45\times 0.0067687^3/1024)\sin(4\times 40^\circ) \cr
&-(35\times 0.0067687^3/3072)\sin(6\times40^\circ)] \cr
=&a[0.9983057\times 0.6981317 - 0.0025426\times\sin 80^\circ] + 0.0000027\sin 160^\circ \cr
&-0.0000000\times \sin240^\circ \cr
=& 0.6944458a
}
$$
$$
M_p = 1.5681349a, \text{using \( 90^\circ \) in place of \( 40^\circ \) in the above example.}
$$
$$
\mu = 90^\circ\times 0.6944458a/1.5681349a = 39.8563451^\circ
$$
Calculation of $\mu$ from series (3-23) , and the inverse $\phi$ from (3-26) , is similar to the example for equation (3-5) except that $e_1$ is used rather than $e$.
From equation (3-24) ,
$$
\eqalign{
e_1 &= [1-(1-0.0067687)^{1/2}]/[1+(1-0.0067687)^{1/2}] \cr
&= 0.001697916
}
$$
Geocentric latitude
# Using equation (3-28) ,
$$
\eqalign{
\phi_g &= \arctan[(1-0.0067687)\tan 40^\circ] \cr
&= 39.8085032^\circ
}
$$
Reduced latitude
# Using equation (3-31) ,
$$
\eqalign{
\eta &= \arctan[(1-0.0067687)^{1/2}\tan 40^\circ] \cr
&= 39.9042229^\circ
}
$$