Numerical Examples - Bipolar Oblique Conic Conformal Projection

Numerical Examples for Bipolar Oblique Conic Conformal Projection #

SPHERE #

Forward Equations #

This example will illustrate equations (17-14) through (17-23), assuming prior calculation of the constants from equations (17-1) through (17-13). Given

Radius of sphere: $R=\;\;$ m
Point: $\phi=\;$°
$\lambda=\;$°

Find $x, y, k$

$$ $$ From equations (17-14) and (17-15)

$$ \eqalign{ z_B &= \arccos\{\sin 45^\circ\sin 40^\circ+\cos 45^\circ\cos 40^\circ\cos[(-19.9933333^\circ)-(-90^\circ)]\} \cr &= 50.2287516^\circ } $$
$$ \eqalign{ Az_B &= \arctan\lbrace\sin[(-19.9933333^\circ)-(-90^\circ)]/[\cos 45^\circ\tan40^\circ-\sin 45^\circ\cos((-19.9933333^\circ)-(-90^\circ))]\rbrace \cr &= 69.4885512^\circ } $$

Since $69.48856^\circ$ is less than $104.42834^\circ$, proceed to equation (17-16).

From equations (17-16) through (17-22),

$$ \eqalign{ \rho_B &= 1.8972474\times6370997.0\tan^{0.6305584}(½\times 50.2287516^\circ) \cr &= 7496092.0\;\text{m} } $$
$$ \eqalign{ k &= 7496092.0\times0.6305584/(6370997.0\sin 50.2287516^\circ) \cr &= 0.9652723 } $$
$$ \eqalign{ \alpha &= \arccos\{ [\tan^{0.6305584}(½\times 50.2287516^\circ) + \tan^{0.6305584}½(104^\circ - 50.2287516^\circ)]/1.2724658 \} \cr &= 1.8750582^\circ } $$
$$ n(Az_BA-Az_B) = 0.6305584\times(104.4283332^\circ-69.4885512^\circ) = 22.0315747^\circ $$

This is greater than $\alpha$, so $\rho’_B = \rho_B$.

$$ \eqalign{ x' &= 7496092.0\sin[0.6305584(104.4283332^\circ-69.4885512^\circ)] \cr &= 2811915.2\;\text{m} } $$
$$ \eqalign{ y' =& 7496092.0\cos[0.6305584(104.4283332^\circ-69.4885512^\circ)] \cr &- 1.2070912 \times 6370997.0 \cr =& -741667.6\;\text{m} } $$

From equations (17-32) and (17-33),

$$ \eqalign{ x &= -2811915.2\cos 45.8199707^\circ -(-741667.6)\sin 45.8199707^\circ \cr &= -1427776.8\;\text{m} } $$
$$ \eqalign{ y &= -(-741667.6)\cos 45.8199707^\circ + 2811915.2\sin 45.8199707^\circ \cr &= 2533454.4\;\text{m} } $$

Inverse Equations #

Inversing forward example:

Given: $R$, for forward example

$x=\;$ m
$y=\;$ m
Find $\phi, \lambda$.

From equations (17-34) and (17-35),

$$ $$
$$ $$
Since $x’$ is positive, go to equations (17-36) through (17-44) in order:
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
Since $Az’_B$, is greater than $\alpha$, go to equation (17-42).
$$ $$
$$ $$
$$ $$