Numerical Examples - Stereographic Projection

Numerical Examples for Stereographic Projection #

SPHERE #

Forward Equations #

Given

Radius of sphere:$R=\;\;$ units
Center:$\phi_1=\;$ °
$\lambda_0=\;$ °
Central scale factor:$k_0=\;$
Point:$\phi=\;$ °
$\lambda=\;$ °

Find $x, y, k$

Using equations (21-4), (21-2), and (21-3) in order,

$$ \eqalign { k &= 2\times 1.0/[1+\sin40^\circ\sin30^\circ+\cos40^\circ\cos30^\circ\cos(-75^\circ-(-100^\circ))] \cr &= 1.0402304 } $$
$$ \eqalign{ x &= 1.0\times1.0402304\cos30^\circ\sin(-75^\circ-(-100^\circ)) \cr &= 0.3807224\;\text{units} } $$
$$ \eqalign{ y &= 1.0\times1.0402304[\cos40^\circ\sin30^\circ - \sin40^\circ\cos30^\circ\cos(-75^\circ-(-100^\circ))] \cr &= -0.1263802\;\text{units} } $$
Examples of other forward equations are omitted, since the above equations are general.

Inverse Equations #

Inversing forward example:

Given $R, \phi_1, \lambda_0, k_0$ for forward example

Point:$x=\;$ units
$y=\;$ units
Find $\phi, \lambda$

Using equations (21-18) and (21-19),

$$ \rho = [0.3807224^2 + (-0.1263802)^2]^{1/2} = 0.4011502\;\text{units} $$
$$ \eqalign{ c &= 2 \arctan[0.4011502/(2\times1.0\times1.0)] \cr &= 22.6832261^\circ } $$
Using equations (21-14) and (21-15),
$$ \eqalign{ \phi =& \arcsin[\cos22.6832261^\circ\sin40^\circ + (-0.1263802)\sin22.6832261^\circ \cr & \cos40^\circ/0.4011502] \cr =& 29.9999991^\circ } $$
$$ \eqalign{ \lambda =& -100^\circ + \arctan[-0.1503837\sin12.9082572^\circ/(0.2233906 \cr &\cos40^\circ\cos12.9082572^\circ - (-0.1651911)\sin40^\circ \sin12.9082572^\circ)] \cr =& -109.9999978^\circ } $$

ELLIPSOID #

Oblique Aspect #

Forward Equations #

Given:

ellipsoid$a=$6378206.4 m
$e^2=$0.00676866
$e=$0.0822719
Center:$\phi_1=$°
$\lambda_0=$°
Central scale factor:$k_0=$
Point:$\phi=$°
$\lambda=$°
Find $x, y, k$

From equation (3-1),

$$ \eqalign{ \chi_1 =& 2\arctan\{ \tan(45^\circ + 40^\circ/2)[(1-0.0822719\sin40^\circ)/ \cr & (1+0.0822719\sin40^\circ)]^{0.0822719/2} \} -90^\circ \cr =& 2\arctan2.1351882-90^\circ \cr =& 39.8085922^\circ } $$
$$ \eqalign{ \chi =& 2\arctan\{ \tan(45^\circ + 30^\circ/2)[(1-0.0822719\sin30^\circ)/ \cr & (1+0.0822719\sin30^\circ)]^{0.0822719/2} \} -90^\circ \cr =& 2\arctan1.7261956-90^\circ \cr =& 29.8318339^\circ } $$
From equation (14-15),
$$ \eqalign{ m_1 &= \cos40^\circ/(1-0.0067687\sin^240^\circ)^{1/2} \cr &= 0.7671179 } $$
$$ \eqalign{ m &= \cos30^\circ/(1-0.0067687\sin^230^\circ)^{1/2} \cr &= 0.8667591 } $$
From equation (21-27),
$$ \eqalign{ A =& 2\times6378206.4\times0.9999\times0.7671179/\{ \cos39.8085922^\circ \cr & [1+\sin39.8085922^\circ\sin29.8318339^\circ + \cos39.8085922^\circ \cr & \cos29.8318339^\circ\cos(-90^\circ-(-100^\circ))]\} \cr =& 6450107.68\;\text{m} } $$
From equations (21-24), (21-25), and (21-26),
$$ \eqalign{ x &= 6450107.68\cos29.8318339^\circ\sin(-90^\circ-(-100^\circ)) \cr &= 971630.79\;\text{m} } $$
$$ \eqalign{ y =& 6450107.68[\cos39.8085922^\circ\sin29.8318339^\circ \cr & - \sin39.8085922^\circ\cos29.8318339^\circ\cos(-90^\circ-(-100^\circ))] \cr =& -1063049.26\;\text{m} } $$
$$ \eqalign{ k &= 6378206.40\cos29.8318339^\circ/(6378206.40\times0.8667591) \cr &= 1.0121248 } $$

Inverse Equations #

Inversing forward example:

Given

$x=\;$m
$y=\;$m
Find: $\phi, \lambda$

From equation (14-15),

$$ \eqalign{ m_1 &= \cos40^\circ/(1-0.0067687\sin^240^\circ)^{1/2} \cr &= 0.7671179 } $$
From equation (3-11), as in the forward oblique example,
$$ \chi_1 = 39.8085922^\circ $$
From equations (20-18) and (21-38),
$$ \eqalign{ \rho &= [971630.79^2 + (-1063049.26)^2]^{1/2} \cr &= 1440187.53\text{ m} } $$
$$ \eqalign{ c_e =& 2\arctan[1440187.57\cos39.8085922^\circ/(2\times6378206.40 \cr & \times0.9999)\times0.7671179] \cr =& 12.9018251^\circ } $$
From equation (21-37),
$$ \eqalign{ \chi =& \arcsin[\cos12.9018251^\circ\sin0.6947910040690184+(-1063049.3)\sin12.9018251^\circ\cr & \cos39.8085922^\circ/1440187.57] \cr =& 29.8318335^\circ } $$
Using $\chi$ as the first trial $\phi$ in equation (3-4),
$$ \eqalign{ \phi =& 2\arctan\{ \tan(45^\circ + 29.8318335^\circ/2)[(1-0.0822719\sin29.8318335^\circ)/ \cr & (1+0.0822719\sin29.8318335^\circ)]^{0.0822719/2} \} -90^\circ \cr =& 29.9991438^\circ } $$
Using this new trial value in the same equation for $\phi$, not for $\chi$,
$$ \eqalign{ \phi =& 2\arctan\{ \tan(45^\circ + 29.8318335^\circ/2)[(1-0.0822719\sin29.9991438^\circ)/ \cr & (1+0.0822719\sin29.9991438^\circ)]^{0.0822719/2} \} -90^\circ \cr =& 29.9999953^\circ } $$
Repeating with $ 29.9999953^\circ $ in place of $ 29.9991438^\circ $ , the next trial $\phi$ is
$$ \phi = 29.9999996^\circ $$
The next trial calculation produces the same $\phi$ to seven decimals. Therefore, this is $\phi$.

Using equation (21-36),

$$ \eqalign{ \lambda =& -100^\circ+\arctan[971630.8\sin12.9018251^\circ \cr & (1440187.57\cos39.8085922^\circ\cos12.9018251^\circ \cr & -(-1063049.30)\sin39.8085922^\circ\sin12.9018251^\circ)] \cr =& -100^\circ+\arctan(216946.86/1230366.77) \cr =& -100^\circ+10.0000000^\circ \cr =& -90.0000000^\circ } $$

Instead of the iterative equation (3-4), series equation (3-5) may be used (omitting terms with $e^8$ here for simplicity):

$$ \eqalign{ \phi =& 29.8318335^\circ\times \pi/180^\circ + (0.0067687/2 + 5\times0.0067687^2/24 \cr & 0.0067687^3/12)\sin(2\times29.8318335^\circ)+(7\times0.0067687^2/48 \cr & + 29\times0.0067687^3/240)\sin(4\times29.8318335^\circ) \cr & + (7\times0.0067687^3/120)\sin(6\times29.8318335^\circ) \cr =& 0.5235988\text{ radian} \cr =& 29.9999995^\circ } $$

Polar Aspect With Known $k_0$ #

Forward Equations #

Given:

ellipsoid$a=$6378206.4 m
$e^2=$0.00672267
$e=$0.0819919
Center:$\phi_1=$
$\lambda_0=$°
Central scale factor:$k_0=$
Point:$\phi=$°
$\lambda=$°
Find $x, y, k$

Since this is the south polar aspect, for calculations change signs of $x, y, \phi_1, \lambda_1$, and $\lambda_0$: $ \lambda_0=100^\circ $ , $ \phi=75^\circ $ , $ \lambda=-150^\circ $

Using equations (15-9) and (21-33),

$$ \eqalign{ t &= \tan(45^\circ-75^\circ/2)/[(1-0.0822719\sin 75^\circ)/(1+0.0822719\sin 75^\circ)]^{0.0822719/2} \cr &= 0.1325179 } $$
$$ \eqalign{ \rho =& 2\times6378388.0\times0.994\times0.1325120/[(1+0.0819919)^{(1+0.0819919)} \cr & \times(1-0.0819919)^{(1-0.0819919)}] \cr =& 1674638.30\text{ m} } $$
Using equations (21-30) and (21-31),
$$ \eqalign{ x &= 1674638.31\sin(-150^\circ-100^\circ) \cr &= 1573645.26\text{ m} } $$
$$ \eqalign{ y &= -1674638.31\cos(-150^\circ-100^\circ) \cr &= 572760.03\text{ m} } $$

Changing signs of x and y for the south polar aspect,
$$ x = -1573645.26\text{ m} $$
$$ y = -572760.03\text{ m} $$

From equation (14-15),

$$ \eqalign{ m &= \cos 75^\circ/(1-0.0067227\sin^275^\circ)^{1/2}\cr &= 0.2596346 } $$
From equation (21-32),
$$ \eqalign{ k &= 1674638.31/(6378388.0\times0.2596346) \cr &= 1.0112244 } $$

Inverse Equations #

Inversing forward example:
Given

$x=\;$m
$y=\;$m
Find: $\phi, \lambda$

Since this is the south polar aspect, for calculations change signs as stated in text: $ \lambda_0=100^\circ $ , $ x=1573645.3\text{ m} $ , $ y=572760.0\text{ m} $ .

From equations (20-18) and (21-39),

$$ \eqalign{ \rho &= (1573645.3^2 + 572760.0^2)^{1/2} \cr &= 1674638.33\text{ m} } $$
$$ \eqalign{ t =& 1674638.33\times[(1+0.0819919)^{(1+0.0819919)} \cr & (1-0.0819919)^{(1-0.0819919)}]^{1/2}/(2\times6378388.0\times0.994) \cr =& 0.1325120 } $$

To iterate with equation (7-9), use as the first trial $\phi$,

$$ \eqalign{ \phi &= 90^\circ - 2\arctan 0.1325120 \cr &= 74.9031986^\circ } $$
Substituting in (7-9),
$$ \eqalign{ \phi =& 90^\circ - 2\arctan\{0.1325120\times[(1-0.0819919\sin74.9031986^\circ)/ \cr & (1+0.0819919\sin74.9031986^\circ)]^{0.0819919/2} \} \cr =& 74.9999558^\circ } $$
Using this second trial $\phi$ in the same equation instead of $ 74.9031986^\circ $ ,
$$ \phi = 74.9999997^\circ $$
The third trial gives the same value to seven places.

From equation (20-16), using ATAN2 function and after adjusting the result to $(-180^\circ,\;+180^\circ]$ range,

$$ \eqalign{ \lambda &= 100^\circ + \arctan[1573645.3/(-572760.0)] \cr &= -150.0000016^\circ } $$

The sign of $\phi$ and $\lambda$ must be reversed for the south polar aspect. Finally,
$$ \phi = -74.9999997^\circ $$
$$ \lambda = 150.0000016^\circ $$

Polar Aspect With Known $\phi_c$ #

Forward Equations #

Given:

ellipsoid$a=$6378206.4 m
$e^2=$0.00672267
$e=$0.0819919
Standard parallel:$\phi_c=$°
$\lambda_0=$°
Point:$\phi=$°
$\lambda=$°
Find $x, y, k$

Since this is the south polar aspect, for calculations change signs of $x, y, \phi_c, \lambda_1$, and $\lambda_0$: $ \phi_c=71^\circ $ , $ \lambda_0=100^\circ $ , $ \phi=75^\circ $ , $ \lambda=-150^\circ $

Using equation (15-9),

$$ \eqalign{ t &= \tan(45^\circ-75^\circ/2)/[(1-0.0819919\sin 75^\circ)/(1+0.0819919\sin 75^\circ)]^{0.0819919/2} \cr &= 0.1325120 } $$
For $t_c$ substitute $ 71^\circ $ in place of $ 75^\circ $ in (15-9), and
$$ \eqalign{ t_c &= \tan(45^\circ-71^\circ/2)/[(1-0.0819919\sin 71^\circ)/(1+0.0819919\sin 71^\circ)]^{0.0819919/2} \cr &= 0.1684118 } $$
From equations (14-15) and (21-34),
$$ \eqalign{ m_c &= \cos 71^\circ/(1-0.0067227\sin^271^\circ)^{1/2}\cr &= 0.3265509 } $$
$$ \eqalign{ \rho &= 6378388.0\times0.3265509\times0.1325120/0.1684118 \cr &= 1638869.54\text{ m} } $$
Equations (21-30), (21-31), and (21-32) are used as in the preceding south polar example,
$$ \eqalign{ x &= 1638869.54\sin(-150^\circ-100^\circ) \cr &= 1540033.61\text{ m} } $$
$$ \eqalign{ y &= -1638869.54\cos(-150^\circ-100^\circ) \cr &= 560526.39\text{ m} } $$

Changing signs of x and y for the south polar aspect,
$$ x = -1540033.61\text{ m} $$
$$ y = -560526.39\text{ m} $$

$$ \eqalign{ m &= \cos 75^\circ/(1-0.0067227\sin^275^\circ)^{1/2}\cr &= 0.2596346 } $$
$$ \eqalign{ k &= 1638869.54/(6378388.0\times0.2596346) \cr &= 0.9896256 } $$

Inverse Equations #

Inversing forward example:
Given

$x=\;$m
$y=\;$m
Find: $\phi, \lambda$

Since this is the south polar aspect, for calculations change signs as stated in text: $ \phi_c=71^\circ $ , $ \lambda_0=100^\circ $ , $ x=1540033.6\text{ m} $ , $ y=560526.4\text{ m} $ .

From equations (15-9) and (14-15), as calculated in the corresponding forward example,

$$ \eqalign{ t_c &= \tan(45^\circ-71^\circ/2)/[(1-0.0819919\sin 71^\circ)/(1+0.0819919\sin 71^\circ)]^{0.0819919/2} \cr &= 0.1684118 } $$
$$ \eqalign{ m_c &= \cos 71^\circ/(1-0.0067227\sin^271^\circ)^{1/2}\cr &= 0.3265509 } $$

From equations (20-18) and (21-40),

$$ \eqalign{ \rho &= [1540033.6^2 + 560526.4^2]^{1/2} \cr &= 1638869.53\text{ m} } $$
$$ \eqalign{ t &= 1638869.53\times0.1684118/(6378388.0\times0.3265509) \cr &= 0.1325120 } $$
For the first trial $\phi$ in equation (7-9)
$$ \eqalign{ \phi &= 90^\circ - 2\arctan 0.1325120 \cr &= 74.9031989^\circ } $$
Substituting in (7-9),
$$ \eqalign{ \phi =& 90^\circ - 2\arctan\{0.1325120\times[(1-0.0819919\sin74.9031989^\circ)/ \cr & (1+0.0819919\sin74.9031989^\circ)]^{0.0819919/2} \} \cr =& 74.9999561^\circ } $$
Replacing $ 74.9031989^\circ $ with $ 74.9999561^\circ $ , the next trial $\phi$ is
$$ \phi = 75.0000001^\circ $$
The next iteration results in the same $\phi$ to seven places.

From equation (20-16), using ATAN2 function and after adjusting the result to $(-180^\circ,\;+180^\circ]$ range,

$$ \eqalign{ \lambda &= 100^\circ + \arctan[1540033.6/(-560526.4)] \cr &= -149.9999997^\circ } $$

The sign of $\phi$ and $\lambda$ must be reversed for the south polar aspect. Finally,
$$ \phi = -75.0000001^\circ $$
$$ \lambda = 149.9999997^\circ $$